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On dissipation mechanisms in micromagnetics
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Abstract. Within the framework of a dynamic version of micromagnetics [1,2], the space-time evolution
of magnetization m in a rigid, saturated ferromagnet is governed by the following equation: γ−1ṁ =
m× (bni + k + div C), where the interaction couple m×k and the couple stress C are to be constitutively
specified. Under constitutive assumptions for k, C, and the free energy ψ, that allow for equilibrium
response and viscosity out of equilibrium and agree with the dissipation principle −k · ṁ + C · ∇ṁ −
ψ̇ ≥ 0, the above evolution equation yields a broad generalization of the standard Gilbert equation. In
particular, while the standard Gilbert equation only incorporates relativistic dissipation, it is shown that the
dissipation mechanisms compatible with the generalized Gilbert equation include exchange dissipation [2],
dry-friction dissipation [3], and others. It is also shown that the additional term proposed in [4] to account
for exchange dissipation, rather than having a genuine dissipative nature, modifies instead the nature of
possible equilibria; and that such a modification is an automatic side effect when dry-friction dissipation
is incorporated in the manner of [3].

PACS. 75.40.Gb Dynamic properties (dynamic susceptibility, spin waves, spin diffusion, dynamic scaling,
etc.) – 76.50.+g Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance

1 Introduction

A recent paper [4] lists those predictions of the “phe-
nomenological” Landau-Lifshitz equation that are found
inconsistent with both the predictions of the “micro-
scopic” quantum-mechanical theory and the relevant
experimental findings1. The paper contends that better
predictions can be obtained if the expression for the re-
laxation term proposed by Landau and Lifshitz is replaced
by another expression that relates relaxation to anisotropy
energy and, especially, to exchange energy.

The attitude of [4] – that “phenomenological” equa-
tions should be tailored by way of analogy and ad hoc rea-
soning – is not different from Landau and Lifshitz’ in their
path-breaking paper [5]2. We find nothing wrong with ana-
logical, ad hoc reasoning when guided and tempered by a
faultless physical insight, as was the case with Landau
and Lifshitz. We find nothing especially good with it ei-
ther: derivations from first principles are preferable, not
only to avoid misconceptions that an analogical procedure
might deem plausible but also to interpret correctly the
proposed variants to a successful model.

a e-mail: ppg@uniroma2.it
1 The adjectives in quotes are those used in [4].
2 Neither does the attitude differ in the exposition of Gilbert

and Landau-Lifshitz equations given in Section 6.2.3 of [6], a
book of many merits, where precession is introduced by anal-
ogy and dissipation by a gradient-flow argument; or in [3],
p. 367, where the dry-friction dissipation mechanism discussed
in Section 4.3 below is introduced by mere analogy as “a simple
correction of the Landau-Lifshitz equation”.

We here use the framework of a continuum-mechanical
theory of dynamic micromagnetics [1,2,7,8] to show
what general, thermodynamically compatible representa-
tion the relaxation term may have in an equation that gen-
eralizes the Gilbert form [9] of the Landau-Lifshitz equa-
tion (Sect. 2). While the proposal in [4] is not compliant
to such a representation, we borrow from [2] and develop a
simple example of a dissipation mechanism, additional to
Gilbert’s, that can be regarded, in a sense that we make
precise, as exchange dissipation (Sect. 4.1).

The general developments of Section 2 are supplement-
ed by an analysis of the Liapounov structures associ-
ated with evolution equations of the Gilbert and Landau-
Lifshitz types (Sect. 3). On the basis of this discussion we
indicate that the addition to the classical Landau-Lifshitz
equation of a higher-order, regularizing term of the type
proposed in [4] leads to a modification of the set of possi-
ble equilibrium solutions, but leaves Gilbert’s relativistic
dissipation as the one dissipation mechanism (Sect. 4.2);
and that additional dissipation is not the only outcome of
including a dry-friction term as exemplified in [3], because
the equilibrium set is modified as well (Sect. 4.3).

2 The Gilbert equation, standard
and generalized

The phenomenology of the space-time evolution of a de-
formable ferromagnet can be described by a dynamic
version of micromagnetics [5,10,11] that was derived
from first principles in [1] and later re-exposed in [2],
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in a condensed manner, so as to cover more general con-
stitutive circumstances.

Briefly, dynamic micromagnetics pictures a ferromag-
net as the composition (not the mixture) of two interacting
continua, the one with a mechanical structure, the other
with a magnetic structure. The kinematics of the com-
posite continuum is described by its motion with respect
to a reference configuration and by the magnetization, a
unit vector field over the current configuration; when the
mechanical constituent continuum is modelled as rigid,
as we here do, or kept immobile, the distinction between
reference and current configurations need not be tracked,
and a source of major difficulties is drained. The dynam-
ics consists in postulating a form for the power expended
in a typical process, a form where systems of generalized
forces appear, which are work-conjugate to the kinemat-
ical variables. These forces are split into forces peculiar
to each constituent continuum and forces that define the
interaction between the two. Peculiar forces can be inte-
rior, and then they are distinguished into mutual forces,
those that body parts exert on each other, and self forces,
those that a body part exerts on itself; and they can be
exterior, distinguished into inertial and noninertial3. In-
teraction forces act exclusively at a distance, and are sup-
posed to have well-defined densities per unit mass. Balance
laws are posited both for the composite continuum and
the constituents, with interaction forces appearing only in
the balances for the latter. The independent balances are
therefore four, two of them resulting from the postulated
translational invariance of the expended power, the other
two from rotational invariance.

Among the balances on which the theory in [1,2]
is based, the following evolution equation for magnetic
torques has central importance:

γ−1ṁ = m× (bni + k + div C), (2.1)

where m is the magnetization per unit mass (a unit vec-
tor), − γ−1ṁ the inertial couple (with γ the gyromagnetic
ratio, a nonnull material constant), m× bni the noniner-
tial distance couple, m× k the interaction couple, and C
the couple stress4.

3 The representation issue for the inertial forces and the self-
forces peculiar of the magnetic constituent continuum is dis-
cussed in [7] and [8] with greater detail than in [1] and [2].
Magnetic inertial forces lend to the balance equation of torques
(Eq. (2.1) below) the pseudoparabolic character carried by the
term on the left side: they are in fact powerless, and the truly
parabolic character of (2.1) is the result of choosing a linearly
viscous response out of equilibrium (cf. Eq. (2.14)).
The representation of magnetic self-forces is delicate because
their dipolar nature implies that they manifest themselves as
partwise-equilibrated systems of distance forces and contact
forces: the more familiar monopolar self-forces, (typically, self-
gravitation) are forces at a distance.

4 Here and henceforth a superscript dot denotes time differ-
entiation. Note that (2.1) guarantees the saturation condition
|m| = 1 at all times, provided it holds at the initial time.
Note also that the insuppressible presence of the inertial cou-
ple makes inherently rate-dependent the predictions based on
the evolution equation (2.1).

Later in this section we shall show how, in the Gilbert
case, the term m × k takes the form of the Gilbert re-
laxation vector, and the term div C the form of the ex-
change field α∆m. To demonstrate how equation (2.1)
yields a broad generalization of the classical Gilbert equa-
tion [6,9], it is enough to restrict attention to rigid ferro-
magnets whose response is constitutively described by the
mappings

k = k̂(m,∇m; ṁ, ∇̇m), (2.2a)

C = Ĉ(m,∇m; ṁ, ∇̇m), (2.2b)

for the interaction couple and the couple stress, and

ψ = ψ̂(m,∇m) (2.3)

for the free energy ψ per unit volume. This response ac-
comodates viscosity out of equilibrium in a manner con-
sistent with the dissipation principle

−k · ṁ + C · ∇̇m− ψ̇ ≥ 0 5. (2.4)

It can be shown that (2.2, 2.3), and (2.4) imply that the
equilibrium response has the form

keq = k̂(m,∇m; 0,0) = − ∂mψ̂(m,∇m), (2.5a)

Ceq = Ĉ(m,∇m; 0,0) = ∂∇mψ̂(m,∇m), (2.5b)

while the viscous response has the form

kvs(m,∇m; ṁ, ∇̇m)

= k̂(m,∇m; ṁ, ∇̇m)− k̂(m,∇m; 0,0), (2.6a)

Cvs(m,∇m; ṁ, ∇̇m)

= Ĉ(m,∇m; ṁ, ∇̇m)− Ĉ(m,∇m; 0,0), (2.6b)

and satisfies the dissipation inequality to which (2.4) re-
duces, namely,

−kvs · ṁ + Cvs · ∇̇m ≥ 0. (2.7)

We now write (2.1) in the form

γ−1ṁ = m× heff + r, (2.8)

where heff , the effective field, and r, the relaxation vector,
are defined to be, respectively,

heff = bni + keq + div Ceq (2.9)

5 Our developments apply also to ferromagnets that are kept
immobile, i.e., ferromagnets that are “at mechanical rest” in
the terminology of [2]. Broader, but of course less transparent,
generalizations of the Gilbert and Landau-Lifshitz equations
obtain if one considers deformable ferromagnets [1,2] and, as
we do in the next two sections, more complex response map-
pings than in (2.2–2.4). In (2.2), ∇̇(·) = d

dt (∇(·)); the order
of time and space differentiation is immaterial in the case of
ferromagnets that are rigid or at mechanical rest (in fact, for
those ∇̇m = ∇ṁ), but in general it is not so.
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and

r = m× hvs, hvs = kvs + div Cvs , (2.10)

with hvs the viscous field 6. The generally accepted inter-
pretation of this form of the evolution equation for mag-
netic torques is that the dynamics of the magnetization
vector m is a precession about the effective field heff , a
motion eventually damped out to the equilibrium situa-
tion that obtains when the relaxation process ends and
the term r vanishes:

m× heff = 0 . (2.11)

We postpone commenting this interpretation, and pass to
derive from (2.8) the standard Gilbert equation.

The usual, simplest constitutive choices are:
(i) for the free energy,

ψS =
1
2
β(m · e)2 +

1
2
α |∇m|2, α > 0, (2.12)

with β the anisotropy-energy modulus and α the exchange-
energy modulus, so that the equilibrium response takes the
form

keq = − β(m · e)e, (2.13a)
Ceq = α∇m; (2.13b)

(ii) for the viscous response,

kvs = −µ ṁ, µ ≥ 0, (2.14a)
Cvs = 0, (2.14b)

with µ the interaction-dissipation modulus; needless to say,
(2.14) agree with the dissipation inequality (2.7). With the
choices (2.13), relation (2.9) yields

heff
S = bni − β (m · e)e + α∆m . (2.15)

On the other hand, with (2.14), the relaxation vector de-
fined by (2.10) takes the Gilbert form

rG = −µm× ṁ. (2.16)

All in all, when one inserts in (2.8) both the standard
effective field heff

S for heff and the Gilbert relaxation rG

for r, the standard Gilbert equation is arrived at:

γ−1ṁ = m×
(
bni − β (m · e)e + α∆m

)
− µm× ṁ.

(2.17)

The evolution equation (2.8) – when coupled with con-
stitutive equations of type (2.5) and (2.6) consistent with
the dissipation inequality (2.7) – constitutes a broad gen-
eralization of (2.17). In particular, the standard effective
field heff

S in (2.15) and the Gilbert viscous field

hvs
G = −µ ṁ (2.18)

6 Our heff is denoted by H in [4] and by Heff in [6], pp. 182–
186.

are generalized to, respectively,

heff = bni −
(
∂

m
ψ̂(m,∇m)− div ∂∇mψ̂(m,∇m)

)
(2.19)

and

hvs = kvs(m,∇m; ṁ, ∇̇m) + div Cvs(m,∇m; ṁ, ∇̇m)
(2.20)

for any thermodynamically compatible assignment of the
mappings kvs and Cvs, that is, for whatever mappings
satisfy

kvs(m,∇m; 0,0) = 0, (2.21a)
Cvs(m,∇m; 0,0) = 0, (2.21b)

−kvs(m,∇m; ṁ, ∇̇m) · ṁ
+Cvs(m,∇m; ṁ, ∇̇m) · ∇̇m ≥ 0. (2.21c)

3 Liapounov structures of the Gilbert
and Landau-Lifshitz types

In this section we indicate what Liapounov structures are
associated with the Gilbert equation in its standard and
generalized forms, and with the Landau-Lifshitz equation,
a version of the standard Gilbert equation which is also
susceptible of generalization, although to a lesser extent.
Our first step is to show that the generalized effective
field (2.19) can be seen as the variational derivative of
a suitably defined effective energy.

3.1 The effective field as a variational derivative

With the use of (2.5), the equilibrium field

heq = keq + div Ceq (3.1)

is seen to be the negative of the variational derivative of
the free-energy functional:

heq = −δm ψ 7. (3.2)

As to the noninertial distance couple bni, we note that
its form is irrelevant to a discussion of dissipation mech-
anisms, where only those terms in the evolution equa-
tion (2.1) count that are the subject of a constitutive
choice restricted by the dissipation principle (2.4): for
what it matters to discussing dissipation mechanisms, we
could as well put in the sequel bni = 0. However, in the
general evolution equation (2.1) as well as in its special
versions, bni is usually taken to be

bni = hext + hmag(m), (3.3)

7 By the variational derivative of a functional of the form
u 7→

R
Ω
φ(u,∇u) we mean the associated field operator of

Euler-Lagrange, that is,

δuφ = ∂uφ− div (∂∇uφ) .



420 The European Physical Journal B

where hext is the external field and hmag(m), the magne-
tostatic field, is the value at a given magnetization field
of the linear Green functional that yields the solution
of the Maxwell equations in the quasi-static approxima-
tion [1,2]8. Each of these fields can be seen as a variational
derivative: respectively, of the external energy and of the
magnetostatic energy, whose densities are

ψext = −hext ·m, (3.4)

ψmag = − 1
2
hmag(m) ·m ; (3.5)

hence,

bni = −δm(ψext + ψmag) 9. (3.6)

Finally, on defining the effective energy per unit volume
to be

ψeff = ψext + ψmag + ψ , (3.7)

we have the desired result:

heff = −δm ψeff . (3.8)

3.2 Liapounov structure of Gilbert type

Take the inner product of the generalized Gilbert equa-
tion (2.8) with m × ṁ, then integrate the resulting re-
lation over the region Ω occupied by the rigid ferromag-
net under study. Then, due to relations (3.8) and (2.10),
and the fact that, in view of the saturation condition,
m × v · m × ṁ = v · ṁ for each vector v, it turns out
that ∫

Ω

m× heff · m× ṁ = −
∫
Ω

δm ψeff · ṁ

= − d
dt

∫
Ω

ψeff +
∫
∂Ω

Ceqn · ṁ, (3.9a)∫
Ω

r · m× ṁ =
∫
Ω

hvs · ṁ (3.9b)

= −
∫
Ω

(−kvs · ṁ + Cvs · ∇̇m) +
∫
∂Ω

Cvsn · ṁ.

Thus, in general, since neither of the boundary integrals
on the right sides of relations (3.9) vanishes, neither the
power expended by the effective field is totally recoverable
nor the power expended by the viscous field is totally dis-
sipated as a consequence of (2.7). However, we note that∫

∂Ω

(Ceq + Cvs)n · ṁ =
∫
∂Ω

m×Cn · m× ṁ , (3.10)

so that, whenever the natural boundary condition

m×Cn = 0 over ∂Ω (3.11)

8 Our external field is often called the applied field, and our
magnetostatic field the demagnetizing field [3,6].

9 A proof of differentiability for the functional
R
Ω

(ψext +
ψmag) is found in [12].

prevails, we arrive at

0 =
d
dt

∫
Ω

ψeff +
∫
Ω

(−kvs · ṁ + Cvs · ∇̇m) . (3.12)

Due to the reduced dissipation inequality (2.7), we con-
clude that, in a smoothly time-dependent magnetization
process, the total effective energy

Ψ eff =
∫
Ω

ψeff

plays the role of a Liapounov function, in that

Ψ̇ eff ≤ 0 (3.13)

along the system’s orbits.

Remark

In the case of the standard Gilbert equation, the effective
field heff

S is given by (2.15), whence a simplification in the
form of the boundary condition (3.11), which becomes

∂nm = 0 over ∂Ω 10; (3.14)

moreover, since the relaxation vector has the form (2.16),
the viscous part (3.9b) of the expended power becomes∫

Ω

rG · m× ṁ = −µ
∫
Ω

|ṁ|2 . (3.15)

Hence, equation (3.12) reduces to

0 =
d
dt

∫
Ω

ψeff
S + µ

∫
Ω

|ṁ|2 . (3.16)

3.3 The Landau-Lifshitz equation and its Liapounov
structure

Return to (2.8) with the relaxation vector in the Gilbert
form (2.16), namely,

γ−1ṁ = m× heff − µm× ṁ. (3.17)

It is not difficult to give equation (3.17) the form

(1 + γ2µ2)γ−1ṁ = m× (heff − γµm× heff); (3.18)

the standard Landau-Lifshitz equation is the special ver-
sion of (3.18) which obtains when heff = heff

S , with the
standard effective field heff

S given by (2.15) combined
with (3.3).

The generalized Landau-Lifshitz equation (3.18) can
also be written in the form (2.8):

γ−1ṁ = m× h̃eff + rL , (3.19)

10 Here ∂n denotes differentiation in the direction of the nor-
mal n to the boundary.
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where

h̃eff =
1

1 + γ2µ2
heff ,

rL =
γµ

1 + γ2µ2
heff
⊥ , (3.20)

heff
⊥ = −m× (m× heff)

(heff
⊥ , as the definition shows and the notation suggests, is

the part of heff orthogonal to m).
In order to derive the Liapounov structure associated

with the Landau-Lifshitz equation we note that∫
Ω

heff · ṁ = −
∫
Ω

δm ψeff · ṁ ,∫
Ω

heff · rL = − γµ

1 + γ2µ2

∫
Ω

|heff
⊥ |2 .

From these relations, with the use of (3.19, 3.20, 3.9a),
and (3.14), we deduce that

0 =
d
dt

∫
Ω

ψeff +
γ2µ

1 + γ2µ2

∫
Ω

|heff
⊥ |2 ; (3.21)

and from this the Liapounov relation (3.13) follows
(cf. [3]), provided that µ > 0 (cf. (2.14a)) but, other than
that, seemingly with no recourse to a dissipation inequal-
ity of thermodynamic significance such as (2.7).

Remark

In spite of the claims to the contrary that one repeatedly
finds in the literature, the Gilbert and Landau-Lifshitz
equations (3.17) and (3.18) are equivalent, both mathe-
matically11 and physically. In particular, for (γµ) → 0
(that is, in the limit of vanishing damping) both equa-
tions reduce to

γ−1ṁ = m× heff
S ; (3.22)

for (γµ) → ∞ (large damping), they both imply that
ṁ→ 0.
11 For 1 the unit matrix and M the skew-symmetric matrix
uniquely associated with the unit vector m, equations (3.17)
and (3.18) can be written as, respectively,

(1 + γµM)−1γ−1ṁ = Mheff

and

(1 + γ2µ2)γ−1ṁ = (1− γµM)Mheff .

On the other hand, for α a real number and a a unit vec-
tor whose associated skew matrix is A, the following inversion
formula holds ([2], Appendix A):

(1 + αA)−1 = (1 + α2)−1 �1− αA + α2 a⊗ a
�
,

where the matrix a⊗ a is defined by its action on each vector
v: (a⊗ a)v = (a · v)a .

It is instructive to compare the consequences of the
Liapounov relations associated with (3.17) and (3.18).
Firstly, we deduce from (3.16) and (3.21) that

µ2

∫
Ω

|ṁ|2 =
γ2µ2

1 + γ2µ2

∫
Ω

|heff
⊥ |2 . (3.23)

In addition, if we agree, as is common practice, that a
relaxation process expires when(

d
dt

∫
Ω

ψeff

)
→ 0 , (3.24)

then, according to (3.16, 3.24) implies that ṁ → 0, and
hence (equivalently in view of (2.16), under saturation
conditions) that rG tends to null; while, with (3.21, 3.24)
implies that heff

⊥ → 0, and hence that rL tends to null (cf.
(3.20)2). In fact, under saturation conditions, it is easy
to show that, if the Landau-Lifshitz equation holds, then
(rL = 0) ⇒ (rG = 0) (provided µ 6= 0); and that, if the
standard Gilbert equation holds, the converse implication
holds true.

4 Dissipation mechanisms compared

The Remark that ends the previous section exposes
the main conceptual difference between the Gilbert and
Landau-Lifshitz formats: the first links relaxation to dissi-
pation, the second to the expected equilibria; and our dis-
cussion in Section 2 indicates that dissipation mechanisms
and equilibrium states are both determined by constitu-
tive anticipations being, in general, mutually independent.

If the dissipation is chosen to have the standard Gilbert
form (2.16), then the Gilbert and Landau-Lifshitz ap-
proaches to relaxation are equivalent. But a Gilbert-type
format should be preferred when looking for general de-
scriptions of the evolution of a ferromagnet, because it
conveniently keeps dissipation and equilibrium separate:
within a Gilbert approach, the constitutive prescriptions
can be modified one at a time, and the consequences of
each modification clearly identified.

This issue is of special importance in the light of known
examples of nonuniqueness in dynamics when certain sin-
gular solutions are found possible in statics (see the Re-
mark below): it is natural to ask whether there are ther-
modynamically admissible constitutive modifications such
as to select among the possible evolution processes those
being physically plausible. In the remain of this section we
discuss certain modifications of this nature that have been
recently proposed, leading to the consideration of dissipa-
tive terms other than Gilbert’s [2] or/and of terms that
change the set of expected equilibrium states [3,4].

The first proposal, which we develop within the gener-
alized Gilbert format of Section 2, is intended to introduce
exchange dissipation into the standard model. The other
two proposals were both advanced within the Landau-
Lifschitz format. The model equations that are arrived at
are worth-studying, even if the derivations are question-
able for the reasons given in the Introduction and here
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above. We briefly indicate how these equations are de-
ducible within a Gilbert format that needs, however, some
further generalization with respect to that of Section 2.

Remark

The model equation

γ−1ṁ = αm× ∆m− µm× ṁ , (4.1)

a stripped version of the standard Gilbert equation (2.17),
can be given the equivalent form analyzed in [2], namely,

µṁ− γ−1m× ṁ = α(∆m + |∇m|2m), |m| = 1; (4.2)

this form makes evident the relation of (4.1) to the
harmonic-map equation

∆m + |∇m|2m = 0 , |m| = 1 , (4.3)

a well-known, physically oversimplified model for the stat-
ics of nematic liquid crystals. Equation (4.1) shares with
equation (4.3) certain stationary solutions with finite en-
ergy (in dimension 3) and a point singularity: say,

m(x) = |x− xo|−1(x− xo) ;

if a singular stationary solution of this type is taken as the
initial datum, then another solution of (4.1) may happen
to evolve in time [13]. Moreover, an example of Chang,
Ding, and Ye [14] for the equation

µ ṁ = α(∆m + |∇m|2m) (4.4)

on a right circular cylinder suggests that a line singular-
ity with finite energy might develop in finite time also
for equation (4.1) (or, perhaps, for Eq. (2.17) itself); the
question also arises as to how such a solution would con-
tinue after a finite-energy singularity is formed (see the
discussions and the literature cited in [2] and [15]).

4.1 Exchange dissipation

The terms in (2.1) relevant to a discussion of dissipation
mechanisms are m × k, the interaction couple, and m ×
div C, the exchange couple. We now indicate briefly their
physical significance.

When a ferromagnet is regarded as the composition of
two interacting continua (recall the second paragraph of
Sect. 2), the interaction couple m×k must enter into the
balance of torques peculiar of the magnetic constituent,
equation (2.1); its equilibrium part m×keq accounts pri-
marily for the anisotropy energy (compare (2.5a) with its
standard special case (2.13a))12; its viscous part m× kvs

12 Anisotropy energy “is . . . mainly related to interactions of
electron orbitals with the potential created by the hosting lat-
tice” ([6], p. 129); that is to say, anisotropy energy accounts
for the interaction of the magnetic constituent with the me-
chanical constituent (the hosting lattice).

accomodates for the relativistic interaction between the
magnetic moments in the crystal, and has been given the
form (2.16) by Gilbert and the form (3.20b) by Landau
and Lifshitz ([5], p. 109).

The reason why we call m×div C the exchange couple
becomes evident when we compare the prescription (2.5b)
for the equilibrium part Ceq of the couple stress C with
its standard special case (2.13b): C accounts for the con-
tact action peculiar of the magnetic constituent, whose
distance-action equivalent is div C ; the constitutive rela-
tion (2.13b) connects Ceq with the magnetization gradient
∇m and the related standard form 1

2α |∇m|2 of the ex-
change energy13. It is therefore natural to associate with
the viscous part m×div Cvs a dissipation mechanism, ad-
ditional to the relativistic interaction envisaged by Gilbert
and attributed to exchange effects.

The simplest constitutive prescription compatible with
the reduced dissipation inequality (2.7) is

Cvs = τ ∇̇m , τ > 0 . (4.5)

When the viscous response is so augmented, the relaxation
power (3.9b) becomes∫
Ω

r · m×ṁ=−
∫
Ω

(µ |ṁ|2 + τ |∇̇m|2) +
∫
∂Ω

∂n(
1
2
τ |ṁ|2)

(4.6)

(cf. (3.15)), while relation (3.16) takes the form

0 =
d
dt

∫
Ω

ψeff
S +

∫
Ω

(µ |ṁ|2 + τ |∇̇m|2) . (4.7)

Remark

The additional dissipation (4.5) translates into the follow-
ing additional term on the right side of the Gilbert equa-
tion: + τ m×∆ṁ ; in particular, the model equation (4.1)
becomes

γ−1ṁ = αm× ∆m− µm× ṁ + τ m×∆ṁ . (4.8)

To our knowledge, an existence proof for equation (4.8)
has not been obtained so far. However, the regularizing
effect of exchange dissipation is expedient to prove exis-
tence of global-weak solutions to (4.2) in the manner of [2]:
the main idea of the proof is to modify equation (4.2) by
introducing two positive small parameters, ε and τ :

µ ṁ− γ−1m× ṁ− τ ∆ṁ = α(∆m− ε−1(|m|2 − 1)m);
(4.9)

13 Another quotation from [6], p. 129, is appropriate to sub-
stantiate our interpretation of the exchange energy as peculiar
of the magnetic constituent: the hosting lattice is now given
no role, “exchange derives from the combination of the elec-
trostatic coupling between electron orbitals and the necessity
to satisfy the Pauli exclusion principle. It results in spin-spin
interactions that favor long-range spin ordering over macro-
scopic distances” (italics are ours).
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the τ−regularization allows to solve (4.9) as an ODE in
an appropriate function space, while the ε−1−penalization
replaces the saturation constraint; the existence result
for equation (4.4) is obtained by passing to the limit for
ε, τ → 0.

4.2 Pseudo exchange dissipation

In [4] Baryakthar et al. lay down the Landau-Lifshitz
equation (3.19), and interpret it just as we did for the gen-
eral equation (2.8) (cf. the sentence after (2.10)); in their
view, as is typical within the Landau-Lifshitz format, the
expression chosen for rL embodies a specific constitutive
visualization of the expected equilibria14.

As anticipated in the Introduction, the authors
of [4] take the Landau-Lifshitz form (3.20)2 of the re-
laxation vector responsible for various inconsistencies,
that they list and discuss, of the predictions based on
the phenomenological theory of relaxation processes in
(ferro)magnets with the corresponding predictions based
on quantum mechanics, as well as with the results of cer-
tain experiments. They surmise that the inconsistencies
are inevitable in standard models like Landau-Lifshitz’ or
Gilbert’s, where dissipation processes of exchange origin
are not properly accounted for; and they propose a variant
of the Landau-Lifschitz relaxation vector, a variant they
claim to yield more accurate predictions. However, since
they use a Landau-Lifshitz format, the only dissipation
mechanism they actually include is Gilbert’s; their pro-
posal basically amounts to change the characterization of
the equilibrium set.

To be specific, consider the standard Landau-Lifshitz
equation. According to [4], the effective field heff

S should
be replaced by, say,

(heff
S − λ∆heff

S ), λ > 0 .

Consequently, the equilibrium magnetization fields solves

m×
(
heff

S − λ∆heff
S

)
= 0 , (4.10)

rather than

m× heff
S = 0 . (4.11)

Remark

When the effective field is modified as above, the model
equation (4.1) becomes

γ−1ṁ = αm× (∆m− λ∆∆m)− µm× ṁ . (4.12)

The powerful regularizing effect of the biharmonic term
allows to show that there are indeed global weak solutions
to (4.12), and that, moreover, they solve (4.1) in the limit
λ→ 0 [16].
14 To quote from [4], p. 619, rL “describes a magnetization
distribution approaching its equilibrium state”.

4.3 Dry-friction dissipation

The proposal in [3] is to include a dissipation term addi-
tional to Gilbert’s in order to account for the “slip-stick”
motion of domain walls15. For the model equation (4.1),
the inclusion of the simplest additional term of this type
leads to

γ−1ṁ = αm× ∆m− µm× ṁ + ηm× f(ṁ) , η > 0 ,
(4.13)

where f(v), the dry-friction mapping, is chosen to be the
subgradient of the potential |v|:

f(v) = − ∂v|v| , (4.14)

and hence

−f(ṁ) = |ṁ|−1ṁ if ṁ 6= 0 , −f(0) ∈ {v | |v| ≤ 1} ·
(4.15)

Accordingly, the relaxation vector (2.10) takes the form

r = m× (−µ ṁ + η f(ṁ)) , ṁ 6= 0 , (4.16)

and the associated relaxation power (3.9b) is∫
Ω

r · m× ṁ = −
∫
Ω

(µ |ṁ|2 + η |ṁ|) . (4.17)

However, this changes to the standard Gilbert equation
and its consequences are not the only outcome of adding
a dry-friction term to (4.1), because the equilibrium set
is modified as well: in fact, equilibrium is now guaranteed
whenever

0 = m× (α∆m + η f(0)) (4.18)

holds for m unimodular and f(0) compliant with the sec-
ond of (4.15).

Remark

With a view toward making greater the insight offered by
the above example of dry-friction dissipation, more general
constitutive equations than (4.14) must be sought, consis-
tent with rate-independence. Just as is done for similar
reasons in classical theories of plasticity, one may think of
constitutive mappings k(v) being homogeneous of degree
zero and continuous over the set of all nonnull vectors,
with at most a jump discontinuity at v = 0. Given such a
mapping, it is easy to show that there is another mapping
k̃, defined over the collection of all unit vectors and such
that k(v) = k̃(|v|−1v) . However, it would not be possible
to replace the constitutive equation (2.2a) by, say,

k̂(m,∇m; ṁ, ∇̇m) = k̂1(m,∇m; ṁ, ∇̇m) + k̂2(|ṁ|−1ṁ)
(4.19)

15 It is suggested in [3] that domain walls are pinned by a
number of magnetic defects (impurities, dislocations, and oth-
ers), and that reported to occur due to removal-restauration
of wall pinning due to magnetic defects.
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and yet to expect to obtain gratis representations of the
type (2.5–2.7) from the requirement that the constitutive
equations (4.19, 2.2b, 2.3), be consistent with the dissipa-
tion principle (2.4): in fact, the standard argument lead-
ing to those representations demands continuity at (0,0)
of the mapping k̂(m,∇m; ·, ·) (see Appendix B of [2]).

5 Conclusions

The standard Gilbert equation for the evolution of the
magnetization vector in a saturated ferromagnet includes
one dissipation term, called relativistic due to its proposed
microscopic explanation, and one exchange-energy term.

Here it has been shown how a generalized Gilbert
equation can be derived within the framework of a dy-
namic version of micromagnetics. This generalized equa-
tion can include, in addition to relativistic dissipation,
various other dissipation mechanisms, all compatible with
the principles of continuum thermodynamics; it can also
include terms accounting for higher-order gradient ener-
gies (the standard exchange energy is a quadratic form in
the first spatial gradient of magnetization).

It has also been shown that the modeling of evolving
magnetization patterns in a ferromagnet calls for a
delicate interplay between physics and mathematical
analysis. Generally speaking, additional energies change
the collection of equilibrium solutions to a given evolution
equation, while additional dissipation mechanisms affect
relaxation toward equilibrium; in principle, such additions
can be expedient to select the smoothest and/or physically
most significant solutions among the many (perhaps, in-
finitely many) weak solutions of the original equation. The
simplest prescriptions of second-order gradient energy, ex-
change dissipation and dry-friction dissipation have been
given special attention; in particular, their mathematical
consequences have been indicated for an especially
simple model equation. A research topic currently under
study along these lines is to find out whether these (or
other) energetic and dissipative terms would rule out the
development with time of finite-energy, low-dimensional

singularities; and, in cases when they do not rule them
out, how a solution would continue after singularities are
formed.

This work has been supported by Progetto Cofinanziato 1998
“Modelli Matematici per la Scienza dei Materiali” and by TMR
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